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Abstract

Formation of bismuth nanocrystals in GaAsBi layers grown by molecular beam epitaxy at 330 °C substrate
temperature and post-growth annealed at 750 °C is reported. Superlattices containing alternating 10 nm-thick
GaAsBi and AlAs layers were grown on semi-insulating GaAs substrate. AlAs layers have served as diffusion
barriers for Bi atoms, and the size of the nanoclusters which nucleated after sample annealing was correlating
with the thickness of the bismide layers. Energy-dispersive spectroscopy and Raman scattering measurements
have evidenced that the nanoparticles predominantly constituted from Bi atoms. Strong photoluminescence
signal with photon wavelengths ranging from 1.3 to 1.7 μm was observed after annealing; its amplitude was
scaling-up with the increased number of the GaAsBi layers. The observed photoluminescence band can be
due to emission from Bi nanocrystals. The carried out theoretical estimates support the assumption. They
show that due to the quantum size effect, the Bi nanoparticles experience a transition to the direct-bandgap
semiconducting state.

Keywords: Bismides, Quantum nanostructures, Molecular beam epitaxy, High-resolution transmission electron
microscopy, Raman spectroscopy, Photoluminescence

Background
GaAsBi-based heterostructures have a large potential for
optoelectronic applications in a wide spectral range ex-
tending from near- to mid-infrared region. GaAsBi is a
group III–V semiconductor compound that is actively
investigated for GaAs-based infrared radiation emitters
[1] and detectors [2–5]. Light-emitting diodes with
GaAsBi active layers radiating at the wavelengths of
~987 nm (at Bi content of 1.8%) were described by Lewis
et al. [6]; the electrically injected bismide laser with ~6%
Bi in a GaAsBi/GaAs multi-quantum well (MQW) was
reported in Ref. [7]. The main difficulty in this field is an
increase of non-radiative recombination center density
due to the low substrate temperatures needed for a mo-
lecular beam epitaxy (MBE) growth of GaAsBi layers
with Bi content above 5%. One of the standard techno-
logical procedures allowing for a reduction of non-
radiative recombination rate is a post-growth annealing
at temperatures higher than those used for MBE growth.

However, in the case of GaAsBi, the effect of annealing
is not unambiguous. It has been shown previously by
our group [8, 9] that the annealing at temperatures
above 600 °C leads to several new features, the most
non-trivial of which is an onset in some of the samples
of rather intense photoluminescence (PL) in the wave-
length range from 1.35 to 1.5 μm, this process being ac-
companied by substantial changes in GaAsBi epitaxial
layer—a reduction of Bi content in the crystalline lattice
and an appearance of nanometer-size clusters [9].
The growth of nanostructures—nanowires, strained

quantum wells or quantum dots (QDs)—is a popular
way to obviate the lattice mismatch between a substrate
and the epitaxial layer grown on it. The most widely
studied examples of QDs based on III–V compounds are
the InGaAs- [10] and InGaN- [11] based QDs grown by
Stranski–Krastanow technique [12]. In the case of
GaAsBi, such a growth mechanism is still not realized.
The nucleation of Bi-related clusters in annealed epitax-
ial GaAsBi layers and their structural characteristics has
been systematically studied in Ref. [13]. It has been
shown that nanoclusters of different crystalline
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structures and compositions—rhombohedral As and Bi
as well as zinc-blende GaAsBi nanoclusters—are nucle-
ating in the bismide layers upon annealing; their size is
varying between 5 and 20 nm. Rhombohedral clusters of
pure bismuth were observed in GaAsBi with relatively
large Bi content (4.7%) grown at low temperature (200 °C)
[13]. In our previous study [9], a formation of
nanometer-size Bi clusters was reported in the high-
temperature-annealed GaAsBi with Bi content above
6%. Moreover, it has been assumed that due to the
size quantization effects, the bismuth nanoclusters be-
come semiconducting rather than semi-metallic (as it
is the case in the bulk Bi crystals), and that, the ra-
diative recombination taking place in Bi clusters can
be responsible for the long wavelength emission ob-
served in annealed GaAsBi samples [9].
The present work reports on a formation of Bi nano-

crystals in annealed GaAsBi/AlAs quantum wells. The
AlAs layers were serving as the barriers both for a
charge carrier confinement and for preventing Bi out-
diffusion from GaAsBi layers during an annealing pro-
cedure. Presence of AlAs layers has secured a nucleation
of Bi nanoparticles in a more controlled way—their size
distribution was narrower and their density was higher
than in annealed bulk layers [9]. The samples obtained
were characterized by high-resolution transmission elec-
tron microscopy (HRTEM), PL and Raman spectroscopy
measurements. Results of these experiments indicate a
presence of pure Bi nanocrystals in the annealed hetero-
structures. Theoretical estimates performed confirm that
Bi nanocrystals can be transformed by the size
quantization effects to the direct gap semiconductors.

Methods
GaAsBi/AlAs MQW structures were grown on semi-
insulating GaAs (100) substrates using SVT-A MBE re-
actor equipped with metallic Ga, Al, and Bi sources as
well as a two-zone cracker source to produce As2. The
following MBE growth scheme was used. Firstly, the
GaAs buffer layer (of about 100 nm) and the first AlAs
barrier were grown using the standard MBE growth
mode at the high temperature of 600 °C. Then, the
growth was interrupted and the substrate temperature
was lowered for a growth of GaAsBi QWs and AlAs
barriers. Migration-enhanced epitaxy (MEE) mode
was used for AlAs deposition at the following growth
sequence: one monolayer (ML) of Al, 5 s interruption
for a migration of group III atoms, then a supply of 1
ML of As [14, 15]. Finally, the MQW structure was
covered by 5 nm-thick GaAs capping layer. The con-
tent of Bi in GaAsBi layers was determined from the
(200)-reflex of ω-2Θ XRD scan and was about 7% for
the as-grown samples.

Two different MQW samples were chosen for mea-
surements. The MQW A-sample contains three 10 nm-
thick and one 20 nm-thick GaAsBi QWs (MBE-grown
at 330 °C) separated by 20 nm-thick AlAs barriers
(MEE-grown at the same temperature). The MQW B-
sample contains 20 QWs with 10 nm-wide GaAsBi
layers separated by 4 nm-thick AlAs barriers grown
under similar conditions as those used for growth of the
A-sample. The high-temperature treatment of both sam-
ples was carried out in the rapid thermal annealing
(RTA) oven at the temperature of 750 °C for 180 s at ni-
trogen ambient. To prevent arsenic loss from the surface
layer, while annealing, the samples were covered by a
sacrificial GaAs wafer.
The atomic force microscopy surface analysis demon-

strated droplet-free surfaces of both as-grown and
annealed MQW structures. The surface roughness of the
GaAs cap layer was below 1 nm. The structural high-
resolution measurements of nanoparticles, which were
formed in MQWs after sample annealing, were carried
out by FEI Tecnai G2 F20 X-TWIN TEM with STEM
module, equipped with an X-ray energy-dispersive spec-
troscopy (EDS) detector for elemental mapping and a
high-angle annular dark-field (HAADF) detector for Z-
contrast imaging. FEI Helios Nanolab 650 dual beam
microscope equipped with an Omniprobe manipulator
was used to prepare specimens for the TEM
measurements.
Figure 1 shows STEM image of the A-sample. The

image evidently reveals numerous nanoparticles,
which were formed in GaAsBi quantum-well (QW)
layers after annealing. An obvious correlation between
the size of nanoparticles and the width of QW layers
can be traced in the image. The correlation evidences
that AlAs layers (darkest regions) are effectively act-
ing as the barriers preventing an out-diffusion of Bi
atoms from GaAsBi layers. The EDS elemental map-
ping of selected area of the sample simultaneously
obtained with HAADF imaging shows (Fig. 2) that
the formed nanocrystals are predominantly consti-
tuted of bismuth atoms.

Fig. 1 STEM image of the A-sample with three 10 nm-thick and one
20 nm-thick GaAsBi QWs grown by MBE and 20 nm-thick MEE-grown
AlAs barriers after annealing at 750 °C temperature for 180 s

Butkutė et al. Nanoscale Research Letters  (2017) 12:436 Page 2 of 7



Results
Raman Spectroscopy
The Raman spectra of the investigated GaAsBi MQW
samples were recorded in the backscattering geometry
by Via Raman (Renishaw) spectrometer equipped with a
thermoelectrically cooled (−70 °C) CCD camera and a
microscope. The 532-nm radiation line from diode-
pumped solid-state laser was used for a photoexcitation.
The 50×/0.75 NA objective lens and 1800 lines/mm
grating were used to record the Raman spectra. The ac-
cumulation time was 400 s. To avoid the sample dam-
age, the laser power at the sample was restricted to
0.06 mW. The Raman frequencies were calibrated using
the silicon standard (line at 520.7 cm−1). Parameters of
the vibrational modes were determined by fitting the ex-
perimental spectra with Gaussian–Lorentzian shape
components using GRAMS/A1 8.0 (Thermo Scientific)
software.
The Raman spectra of the as-grown and annealed

GaAsBi/AlAs MQW A-sample are presented in Fig. 3.
An intense doublet observed in the as-grown sample
(Fig. 3, green curve) at 269 and 290 cm−1 corresponds to
the GaAs-like transverse optical (TO) and longitudinal
optical (LO) phonon modes, respectively [16–18]. In the
backscattering geometry, the TO band is symmetrically
forbidden for the ideal GaAs crystal [17, 18], but Bi-
induced crystalline structure disorder breaks the sym-
metry of GaAs crystalline lattice and activates TO mode.
Two other broad Bi-induced vibrational modes visible

near 227 and 181 cm−1 can be attributed to GaBi-like
vibrational modes [18]. The presence of AlAs barriers
can be recognized in the Raman spectrum from a sharp
LO mode at 402 cm−1 [19].
Relatively short (180 s) thermal annealing of the sam-

ple at 750 °C induces essential changes in the Raman
spectrum: (i) intense low frequency bands appear at 72
and 96 cm−1, (ii) intensity of the bands near 269, 227,
and 181 cm−1 decreases, and (iii) a broad feature near
361 cm−1 appears in the annealed sample spectrum. The
two low-frequency bands at 72 and 96 cm−1 correspond
well to Eg and A1g modes of the crystalline bismuth [20–
24]. The appearance of these bands together with a de-
crease in intensity of the Bi-induced GaBi-like bands at
269 and 181 cm−1 shows that thermal annealing causes
in withdrawing of bismuth from the GaAsBi lattice sites
and its agglomeration to Bi nanocrystals. Moreover, the
formation of bismuth nanocrystals also affects the crys-
talline structure of AlAs layers, as it is apparent from
the rise of a broad defect-induced TO feature near
361 cm−1 [25].

Photoluminescence Measurements
The temperature-dependent photoluminescence (PL)
measurements were carried out using a 500-mm focal
length monochromator (Andor SR-500i) along with the
liquid nitrogen cooled InGaAs photodetector. A diode-
pumped solid-state laser emitting at the wavelength of
532 nm was used as an excitation source at the excita-
tion power of 38 mW. The samples were mounted on

Fig. 2 HAADF–STEM Z-contrast image of Bi nanocrystals in GaAsBi/
AlAs MQW structures (above). The EDS images (below) represent the
elemental mapping of intensities of Ga, Al, Bi, and As, measured on
the marked area of STEM image

Fig. 3 Raman spectra of the as-grown (green curve) and annealed
(red curve) GaAsBi MQW A-sample
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the cold finger of a closed-cycle helium cryostat coupled
with temperature controller, allowing for measurements
in the temperature range of 3–300 K.
The PL spectra of the annealed A-sample, which con-

tains three 10 nm-thick and one 20 nm-thick GaAsBi
QWs, measured at different temperatures are presented
in Fig. 4a. Two major sets of spectral features below the
bandgap of GaAs can be distinguished. Strong higher-
energy peak situated at about 1.35 eV can be attributed
to radiative transitions in GaAsBi QWs. Position of the
peak is close to that observed in GaAs0.979Bi0.021/GaAs
quantum wells [26] and correlates with XRD data which
indicated the Bi content of 2.1% in the GaAsBi QW
layers of A-sample after its annealing. The spectral fea-
tures at low-energy side, 0.6–1.05 eV, appear in PL spec-
tra after a thermal annealing of the sample and,
therefore, can be attributed to optical transitions in Bi
nanocrystals. The low-energy PL band has an inner
structure, which reveals itself at low temperatures.
Namely, at T = 3 K, the PL components positioned at
0.67, 0.88, and 0.98 eV can be distinguished. As it is seen
from Fig. 4a, at liquid helium temperature, the PL signal
from GaAsBi QWs is two orders of magnitude stronger
than the low-energy PL band. However, the high-energy
PL peak decreases rapidly with an increase of
temperature and the low-energy PL peak starts to dom-
inate at T > 100 K.
The PL spectra of B-sample, which contains twenty

10 nm-thick GaAsBi quantum wells separated by 4 nm-
thick AlAs barriers, are presented in Fig. 4b. Prior to
thermal annealing, as was the case for the A-sample, the
B-sample manifested only the higher-energy, QW-
related, PL band. The strong low-energy PL peak at
about 0.85 eV was observed after the thermal annealing
and, therefore, we assume, can be attributed to emission
from Bi nanocrystals. Intensity of the low-energy peak in
B-sample is stronger than that in A-sample and scales

up with an increased number of QWs. At low tempera-
tures, three components of the peak, which were well-
resolved in A-sample, can be traced. However, in the B-
sample, the low-energy PL peak is dominated by its
0.85 eV component in the whole temperature range in-
vestigated. Position of the higher-energy, QW-related,
PL peak is slightly shifted to lower energies with respect
to its position in A-sample in accordance with XRD
data, which indicated the 2.8% Bi in quantum-well layers
of B-sample after its thermal annealing. In B-sample, the
QW-related PL peak reveals its inner structure. The
peak is constituted from the bound exciton related com-
ponent at about 1.27 eV, which dominates at low tem-
peratures, and delocalized exciton related component,
which is situated at about 1.35 eV and is dominating at
higher-temperatures. The inner structure of the QW-
related peak results in a characteristic S-type
temperature dependence of the PL peak position (full
dots in Fig. 5), which was observed previously both in
bulk GaAsBi [27] and in GaAsBi/GaAs quantum wells
[26]. The PL peak positioned at low photon energies
shows much weaker temperature dependence (open dots
and curve in Fig. 5), which can be fitted by the Varshni
function E(T) = E(0) − αT2/(β + T) with the α and β pa-
rameters equal to 10−4 eV/deg and 100 K, respectively. It
should be noted that the value of α parameter, respon-
sible for the energy gap variation with temperature, is
much smaller than its standard values for a majority of
semiconductors, 3°10−4–5°10−4 eV/deg. This makes Bi
nanocrystal matrix an important potential system for the
light sources emitting at telecom wavelengths and hav-
ing low temperature sensitivity.

Discussion
The HRTEM, EDS, and Raman spectroscopy measure-
ments carried out in the present study indicate that Bi
nanocrystals (quantum dots) precipitate in GaAsBi layers

Fig. 4 Temperature-dependent PL spectra of the annealed a A-sample composed of three 10 nm-wide and one 20 nm-wide GaAsBi/AlAs QWs
and b B-sample composed of 20 10 nm-wide GaAsBi/AlAs QWs
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after a thermal annealing of the low-temperature MBE-
grown GaAsBi/AlAs MQW samples. One can assume
that these nanocrystals are responsible for the long-
wavelength photoluminescence band which reveals itself
in the annealed samples. Although the bulk bismuth is
semi-metallic, the small effective masses of Bi charge
carriers result in an early onset of quantum confinement
effects in Bi-based nanostructures. In fact, one of the
first experimental observations of the size-quantization
effects was reported for thin Bi layers [28]. Semimetal-
to-semiconductor transition in thin Bi films, d < 30 nm,
was experimentally observed in Ref. [29]. The transition
has been also revealed in Bi nanowires with diameters
smaller than 65 nm [30, 31]. In both these cases, the
semiconducting state was identified from measurements
of the temperature-dependent electric characteristics.
The quantum size effect in bismuth nanoparticles was
for the first time studied by electron energy loss spec-
troscopy [32], and the semi-metal to semiconductor
transition was found to occur in Bi nanoparticles with
diameters below 40 nm. The transition to the direct
semiconductor state was lately reported [33] for colloidal
3.3 nm Bi nanoparticles.
In pure Bi, the principle valleys of electrons and holes

are located at the L and T points of the Brillouin zone
and correspond to ellipsoidal isoenergetic surfaces
(Table 1). The ground state of the ellipsoidal valley elec-
trons (holes) in a spherical quantum dot can be approxi-
mately estimated as

W ¼ π2ℏ2

2mr20
: ð1Þ

Here r0 is the QD radius and m is the average inverse
effective mass,

1m ¼ 1
3

1
m1

þ 1
m2

þ 1
m3

� �
; ð2Þ

m1, m2, and m3 are the principal effective masses of
the ellipsoidal valley.
The phenomenological formula (1) gives a close esti-

mate of the ground energy level ε1 in an infinitely deep
spherical QD at arbitrary ratios of the effective masses.
Indeed, it is exact, ε1 =W, in the case of a spherical isoe-
nergetic surface (m1 =m2 =m3), predicts the ε1 energy
with an accuracy of 12%, ε1 ≈ 0.88W, and 25%, ε1 = 0.75
W, in the limiting cases of strongly prolate spheroidal
valley (m1 =m2, m3→∞) and strongly oblate spheroidal
one (m1 =m2, m1→∞), respectively. Therefore, at arbi-
trary values of the principle effective masses, formula (1)
approximates the QD ground energy with accuracy bet-
ter than 25%.
Formula (1) allows for a simple straightforward evalu-

ation of the effective energy gaps in bismuth quantum
dots, Eg,eff = Eg +We +Wh, where Eg is an energy gap in
a bulk crystal and We and Wh are the electron and hole
size quantization energies (1). The calculated effective T
and L energy gaps are presented graphically in Fig. 6.
(The electron and hole masses at both T and L points
were assumed to be equal.)
In the bulk, semi-metallic bismuth, the conduction

band minimum of the L valley is 38 meV below the T
valence band maximum. When a size of Bi particles
is reduced, the effective energy bandgap at the L
point increases faster than that at the T point due to
smaller effective masses of the L-valley, what is even-
tually leading to the semimetal to semiconductor
transition (the i-crossover point in Fig. 6). At first, a
bismuth nanocrystal becomes the indirect semicon-
ductor with the lowest conduction band minimum at
the L point and the highest valence band maximum
at the T point. With a further decrease of the QD
size, both the valence and conduction band edges will
emerge at the T points making the Bi QD to become
a direct gap semiconductor (the d-crossover point in
Fig. 6).
It should be noted that Fig. 6 presents only a rough

scheme of the energy spectrum, because the scheme

Fig. 5 Temperature dependencies of spectral positions of the high-
and low-energy PL bands for the annealed B-sample composed of
twenty 10 nm-wide GaAsBi/AlAs QWs

Table 1 Parameters of the bulk Bi energy structure [35–37] (m0

is the free electron mass)

Symmetry
point

Eg Fermi
energy

Effective mass
components

m

T 0.407 eV 11.6 meV m1 =m2 = 0.059m0 m ¼ 0:0846m0

m3 = 0.634m0

L 0.015 eV 26.6 meV m1 = 0.00521m0 m ¼ 0:0113m0

m2 = 1.21m0

m3 = 0.0136m0
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disregards the non-parabolicity effects and assumes the
infinite energy barriers for QDs. A deviation from the
parabolic dispersion law is essential for the L-valley (see
e.g., [34]). Indeed, the effective masses at the L-valley
center are approximately five times smaller than their
values at the Fermi energy (which were used for calcula-
tions of the energy spectrum presented in Fig. 6). On
the other hand, the non-parabolicity effects are weaker
at the T points, where the energy bandgap is larger, and
therefore, the presented effective T energy gap (Fig. 6)
can be considered as its relevant estimate.
Above, we had assumed the low-energy PL peak at

~0.85 eV to be due to the optical transitions which
are taking place in Bi nanocrystals with diameters of
about 10 nm. The presented calculations for the d =
10 nm QDs predict the Eg,eff = 0.76 eV effective en-
ergy gap, which is in a reasonable agreement with the
experiment and, therefore, supports the hypothetical
assumption of the low-energy PL peak origin.

Conclusions
In summary, multiple GaAsBi/AlAs-layered quantum-
well structures were grown by a mixed MBE/MEE
process on GaAs substrates. After post-growth thermal
annealing of the structures at 750 °C, numerous rela-
tively low-dispersed nanoparticles were nucleated within
GaAsBi quantum wells. HRTEM, EDS, and Raman spec-
troscopy measurements show that the nanocrystals are
predominantly composed of bismuth. The photolumi-
nescence measurements carried out reveal an additional
low-energy, ≈0.85 eV, PL peak which appears in the
annealed samples. The low-energy PL peak presumably
can be due to optical transitions in Bi nanocrystals,
which by the quantum size effects are transformed to

the direct-bandgap semiconducting state. The carried
out estimates of the Bi quantum dots energy spectrum
support the assumption. Further and more detailed ex-
perimental and theoretical work is required for a definite
answer.
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